أهلا و مرحبا بك في منتداك منتدي هندسة الفيوم
تفضل بالدخول عزيزي العضو و ان لم تكن عضوا
يسعدنا جدا أن تكون واحدا من عائلتنا



 
بوابتناالرئيسيةبحـثقائمة الاعضاءالمجموعاتاليوميةالتسجيلمكتبة الصوردخولس .و .ج
شارك معانا من فضلك ولا تكون سلبيا في اعاده تطوير وهيكله المنتدي من فضلك قم باضافه رايك والي شايفه منوجه نظرك وهنسمعك ونحاول ننفذ باذن الله
شاطر | 
 

 أشكال هندسيه وشرحها بالكامل

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
IEEE Chairman
المدير العام
المدير العام


[img][/img]
كيف تعرفت علينا: بحث جووجل
ذكر
عدد الرسائل: 7861
العمر: 25
المزاج: not very good
السنة: رابعة
القسم: اتصالات
محافظتك: الفيوم
جامعتك: الفيوم
قسم مختلف: حابب هندسه كيميا
احترام قوانين المنتدي:
نقاط: 6379
السٌّمعَة: 21
تاريخ التسجيل: 21/05/2008

مُساهمةموضوع: أشكال هندسيه وشرحها بالكامل   الجمعة يونيو 27, 2008 7:01 pm

المنشور:

المنشور ينشأ من حركة مساحة مستوية على شكل مضلع في اتجاه عمودي على مستويها تسمى المساحة في وضع الأول والأخير بقاعدتي المنشور والمستقيم المتولد من حركة أي رأس يسمى حرفاً جانبياً ويعرف هذا بالمنشور القائمة وإن كانت الحركة للمساحة في اتجاه يميل على المستوى قيل أن المنشور مائل وفي الحالتين تكون الأحرف الجانبية متوازية ومتساوية وتعرف متوازيات الأضلاع الناشئة بالأوجه الجانبية للمنشور ويسمى المنشور حسب عدد أضلاع قاعدته فالمنشور الثلاثي ما كانت قاعدته مثلث والمنشور الرباعي ما كانت قاعدته شكل رباعي وارتفاعه العمود النازل من أي نقطة على أحد قاعدتيه على القاعدة الأخرى.
حجم المنشور = مساحة قاعدته × الارتفاع
المساحة الجانبية للمنشور المائل = محيط القاعدة × ارتفاعه الجانبي
المساحة الجانبية للمنشور القائم = محيط القاعدة × ارتفاعه (طول حرفه الجانبي)
المساحة الكلية = المساحة الجانبية + مساحة القاعدتين



متوازي السطوح:
منشور قاعدته متوازي أضلاع. (جميع أوجهه الجانبية متوازيات أضلاع)
أقطاره تتقاطع في نقطة واحدة منتصف كل منها

متوازي المستطيلات:
منشور رباعي قائم قاعدته مستطيل وبالتالي جميع أوجهه مستطيلات.
أقطاره متساوية ومربع أي منها يساوي مجموع مربعات ثلاث أحرف منه متلاقية في نقطة واحدة.
حجم متوازي المستطيلات = الطول × العرض × الارتفاع أو مساحة القاعدة × الارتفاع
يمكن اعتبار أي وجه في كل من متوازي السطوح أو متوازي المستطيلات قاعدة لمنشور رباعي.

المكعب:
متوازي مستطيلات جميع أحرفه متساوية.
مربع قطره يساوي 3 أمثال مربع طول ضلعه
حجم المكعب = ل3 حيث ل طول حرفه
المساحة الجانبية للمكعب = 4 ل2
المساحة الكلية للمكعب = 4 ل2 + 2 ل2 = 6 ل2 ( 2 ل2 مساحة القاعدتين)

الزاوية بين وجه في المنشور وقاعدته:
هي الزاوية الزوجية (ى) بين أحد الأوجه والقاعدة والمبينة بالشكل
حيث: ع ارتفاع المنشور.
عــ ارتفاعه الجانبي.

المنشور المائل يكافئ المنشور القائم الذي قاعدته المقطع القائم للمنشور المائل وارتفاعه يساوي الحرف الجانبي في المنشور المائل

الاسطوانة :

السطح الاسطواني ينشأ من حركة مساحة محدودة بمنحنى مقفل في اتجاه عمودي عليها ولا توجد أوجه جانبية بل سطح منحني يعرف بالسطح الاسطواني، وإن كان السطح المتحرك محدود بدائرة كان الجسم المتولد اسطوانة دائرية قائمة وإن كانت الحركة في اتجاه يميل على السطح المتحرك كان الجسم المتولد اسطوانة دائرية مائلة.
يمكن أن نقول الاسطوانة هي منشور قاعدتيه دائرتان
وتتولد الاسطوانة الدائرية القائمة أيضاً من دوران مستطيل حول أحد بعديه دورة كاملة ويكون هذا البعد ارتفاع الاسطوانة (ع) والبعد الآخر نصف قطرها (نق).
وتتولد الاسطوانة عن حركة مستقيم مواز لنفسه قاطعاً محيط دائرة ويعرف هذا المستقيم براسم الاسطوانة.
يسمى البعد بين مركزي قاعدتي الاسطوانة(دائرتان) محور الاسطوانة.
إذا لم تكن قاعدتا الاسطوانة متوازيتان كانت الاسطوانة ناقصة، وذكر كلمة اسطوانة يعني اسطوانة دائرية قائمة تامة (كاملة).

حجم الاسطوانة = مساحة القاعدة × الارتفاع ( هي حالة خاصة من المنشور)
المساحة الجانبية للاسطوانة = محيط القاعدة × الارتفاع
= 2 ط نق × ع
= 2ط نق ع
المساحة الكلية للاسطوانة = المساحة الجانبية + مساحة القاعدتين
= 2 ط نق ع + 2 ط نق2 ( مساحة الدائرة = ط نق2 )
= 2ط نق( ع + نق)

إذا تساوى حجما اسطوانتين دائرتين قائمتين كانت النسبة بين مساحتيهما تساوي النسبة العكسية لنصفى قطري قاعدتيهما.
إذا تساوت المساحتان الجانبيتان لأسطوانتين دائرتين قائمتين كانت النسبة بين حجميهما كالنسبة بين نصفى قطري قاعدتيهما.





الهـرم :

إذا علم مضلع مستو ونقطة خارجة ووصلت برؤوس المضلع تكونت عدة مثلثات قواعدها أضلاع المضلع والجسم الذي تحدده سطوح هذه المثلثات وسطح المضلع يسمى هرم.

قاعدة الهرم هي ذلك المضلع والرأس المشترك للمثلثات هو رأس الهرم والمثلثات هي أوجه الهرم الجانبية والعمود النازل من رأس الهرم على قاعدته هو ارتفاع الهرم ويسمى الهرم حسب عدد أضلاع قاعدته فإن كانت مثلث قيل هرم ثلاثي ويسمى الهرم قائم إذا كان موقع العمود من الرأس على القاعدة وهي مضلع منتظم هو مركز القاعدة (المضلع المنتظم ما كانت أضلاعه وزواياه متساوية كالمثلث المتساوي الأضلاع).

إذا قطع الهرم بمستوى يوازي قاعدته نشأ هرم ناقص متوازي القاعدتين النسبة بين مساحتي القاعدتين كالنسبة بين مربعي بعديهما عن رأس الهرم.

حجم الهرم = 1/3 مساحة القاعدة × الارتفاع
المساحة الجانبية للهرم = نصف محيط قاعدته × الارتفاع الجانبي
المساحة الكلية للهرم = المساحة الجانبية + مساحة قاعدته .........._____
حجم الهرم الناقص المتوازي القاعدتين= 1/3ع( ق1 + ق2 + /\ ق1 ق2 ) ق1 ، ق2 مساحتي القاعدتين
المساحة الجانبية للهرم الناقص المتوازي القاعدتين = نصف مجموع محيطي قاعدتيه × الارتفاع الجانبي
المساحة الكلية للهرم الناقص المتوازي القاعدتين = المساحة الجانبية + مساحتي قاعدتيه





المخروط

السطح المخروطي يتولد من حركة مستقيم مار بنقطة ثابتة وقاطع محنى مستوى معلوم. فالمنحنى هو محيط قاعدة المخروط والمستقيم يسمى راسم السطح المخروطي ويسمى في أ وضع راسم وإن كان المنحنى دائرة قيل مخروط دائري وكذلك المخروط حالة خاصة من الهرم قاعدته دائرة وإذا مر الارتفاع بمركز القاعدة قيل مخروط دائري قائم، ومقطع المخروط الناشئ من قطعه بمستوى يمر برأسه والقاعدة هو مثلث متساوي الساقين وإذا قطع المخروط بمستوى يوازي القاعدة نشأ المخروط الدائري المتوازي القاعدتين،
كما ينشأ المخروط الناقص الدائري القائم من دوران شبه منحرف قائم حول ارتفاعه دورة كاملة.
كما يتولد المخروط الدائري القائم من دوران مثلث قائم حوا أحد ضلعي القائمة.


حجم المخروط الدائري القائم =1/3 مساحة القاعدة × الارتفاع
حجم المخروط الدائري القائم = 1/3ط نق2× ع
حجم المخروط الدائري القائم = 1/3 ط ع3 طا2هـ حيث هـ الزاوية نصف الرأسية
حجم المخروط الدائري القائم =1/3 ط نق3 طتاهـ
حجم المخروط الدائري القائم الناقص = 1/3 ط ع [ (نق1)2 + نق1 نق2 + (نق2)2 ]
المساحة الجانبية للمخروط الدائري القائم = نصف محيط قاعدته × طول راسمه
= ط نق ل حيث ل طول راسم المخروط

................ـــــــــــــــــــــــــــ
= ط نق /\ نق2 + ع2
المساحة الجانبية للمخروط النقص المتوازي القاعدتين = نصف مجموع محيطي قاعدتيه المتوازيتين × طول حرفه
= ط ( نق1 + نق2) × ح
المساحة الكلية = المساحة الجانبية + مساحة القاعدة للمخروط الدائري القائم
المساحة الكلية = المساحة الجانبية + مساحة القاعدتين للمخروط الدائري القائم الناقص المتوازي القاعدتين



الكـرة
الكرة جسم محدد بسطح مقفل وجميع نقطه تقع على أبعاد متساوية من نقطة ثابتة.
تسمى النقطة الثابتة بمركز الكرة والبعد الثابت بنصف قطر الكرة (نق).
وتنشأ الكرة من دوران نصف دائرة دورة كاملة حول قطرها.
المقطع الحادث من قطع الكرة بمستوى يمر بمركزها هو دائرة نصف قطرها يساوي نصف قطر الكرة
، تسمى هذه الدائرة بالدائرة العظمى ويسمى المستوى بالمستوى المركزي أو القطري
إذا قطع كرة مستوى فالمستوى الحادث محيط دائرة صغرى ( المستوى لا يمر بالمركز)


حجم الكرة = 4/3 ط نق3
مساحة سطح الكرة = 4 ط نق2


الكرة الناقصة :
هي الواقعة بين مستويين متوازيين قاطعين للكرة. يسمى المقطعان بالقاعدتين والبعد بينهما بالارتفاع.
يسمى السطح الكروي للكرة الناقصة بالمنطقة الكروية.
القطعة الكروية : إذا قطعت الكرة بمستو غير مار بالمركز انقسمت إلى جزأين يسمى كل منهما قطعة كروية ويكون المقطع قاعدة القطعة الكروية والعمود المقام من مركز المقطع (دائرة) ملاقي محيط الكرة في نقطة هو ارتفاع القطعة الكروية ( ن هـ في الشكل ).
يسمى السطح الكروي للقطعة الكروية بالطاقية الكروية، وهي حالة خاصة من المنطقة باعتبار أحد قاعدتيها مماس للكرة.

مساحة المنطقة الكروية = 2 ط نق ع حيث نق نصف قطر الكرة ، ع ارتفاع المنطقة الكروية.
مساحة الطاقية الكروية = 2 ط نق ع حيث نق نصف قطر الكرة ، ع ارتفاع القطعة الكروية.


حجــم المنطقة الكروية = ط ع /6[ 3{(نق1)2 +(نق2)2 } + ع2] ............ (1)
بوضع نق2 = صفر في (1) فإن المنطقة الكروية تؤول إلى قطعة كروية نصف قطر قاعدتها نق1 وارتفاعها ع فإن :
حجــم القطعـة الكروية =ط ع/6[ 3 (نق1)2 + ع2]
بوضع نق2 = 0 ، نق1 = نق في (1) فإن ع تؤول إلى نق والمنطقة الكروية تؤول إلى نصف كرة نصف قطرها نق ومنها:
حجــم نصـف الكـرة = ط نق/6[ 3 نق2 +نق2] = 2/3ط نق3

حجــم نصـف الكـرة = 2/3 ط نق3
بوضع في (1) نق2 = 0 ، نق1 = 0 ، ع = 2نق فإن المنطقة الكروية تؤول إلى كرة نصف قطرها نق ومنها:
حجــم الكـرة =ط * 2نق /6[ 0 + (2نق)2]


الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://eng-fayoum.forum3.info
eng_dido
المدير العام
المدير العام


[img][/img]
ذكر
عدد الرسائل: 5057
العمر: 24
المزاج: عادي كله تمام
السنة: رابعة
القسم: صناعية
محافظتك: الفيوم
جامعتك: لا
قسم مختلف: -----
احترام قوانين المنتدي:
بلدي:
نقاط: 3885
السٌّمعَة: 14
تاريخ التسجيل: 18/05/2008

مُساهمةموضوع: رد: أشكال هندسيه وشرحها بالكامل   السبت يونيو 28, 2008 10:19 pm

و الله بجد الموضوع ده مفيد جدا و ممتاز يا سمسم
ربنا يقويك


دووووووووووس هنا و شوف

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://eng-fayoum.forum3.info
 

أشكال هندسيه وشرحها بالكامل

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
 :: 

هندسة اون لاين :: الفرقة اعدادي

-